Decadal-Scale Forecasting of Climate Drivers for Marine Applications.
نویسندگان
چکیده
Climate influences marine ecosystems on a range of time scales, from weather-scale (days) through to climate-scale (hundreds of years). Understanding of interannual to decadal climate variability and impacts on marine industries has received less attention. Predictability up to 10 years ahead may come from large-scale climate modes in the ocean that can persist over these time scales. In Australia the key drivers of climate variability affecting the marine environment are the Southern Annular Mode, the Indian Ocean Dipole, the El Niño/Southern Oscillation, and the Interdecadal Pacific Oscillation, each has phases that are associated with different ocean circulation patterns and regional environmental variables. The roles of these drivers are illustrated with three case studies of extreme events-a marine heatwave in Western Australia, a coral bleaching of the Great Barrier Reef, and flooding in Queensland. Statistical and dynamical approaches are described to generate forecasts of climate drivers that can subsequently be translated to useful information for marine end users making decisions at these time scales. Considerable investment is still needed to support decadal forecasting including improvement of ocean-atmosphere models, enhancement of observing systems on all scales to support initiation of forecasting models, collection of important biological data, and integration of forecasts into decision support tools. Collaboration between forecast developers and marine resource sectors-fisheries, aquaculture, tourism, biodiversity management, infrastructure-is needed to support forecast-based tactical and strategic decisions that reduce environmental risk over annual to decadal time scales.
منابع مشابه
Forecasting of rainfall using different input selection methods on climate signals for neural network inputs
Long-term prediction of precipitation in planning and managing water resources, especially in arid and semi-arid countries such as Iran, has a great importance. In this paper, a method for predicting long-term precipitation using weather signals and artificial neural networks is presented. For this purpose, climatic data (large-scale signals) and meteorological data (local precipitation and tem...
متن کاملRemote climate forcing of decadal-scale regime shifts in Northwest Atlantic shelf ecosystems
Decadal-scale regime shifts in Northwest Atlantic shelf ecosystems can be remotely forced by climateassociated atmosphere–ocean interactions in the North Atlantic and Arctic Ocean Basins. This remote climate forcing is mediated primarily by basinand hemispheric-scale changes in ocean circulation. We review and synthesize results from process-oriented field studies and retrospective analyses of ...
متن کاملDecadal-scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA
[1] Little Ice Age (14th–19th centuries A.D.) glacial maxima and 20th century retreat have been well documented in Glacier National Park, Montana, USA. However, the influence of regional and Pacific Basin driven climate variability on these events is poorly understood. We use tree-ring reconstructions of North Pacific surface temperature anomalies and summer drought as proxies for winter glacia...
متن کاملMarine Sediments Remotely Unveil Long-Term Climatic Variability Over Northern Italy
A deep understanding of natural decadal variability is pivotal to discuss recently observed climate trends. Paleoclimate proxies allow reconstructing natural variations before the instrumental period. Typically, regional-scale reconstructions depend on factors like dating, multi-proxy weighting and calibration, which may lead to non-robust reconstructions. Riverine records inherently integrate ...
متن کاملMarine primary production in relation to climate variability and change.
Marine photosynthetic plankton are responsible for approximately 50 petagrams (10(15)) of carbon per year of net primary production, an amount equivalent to that on land. This primary production supports essentially all life in the oceans and profoundly affects global biogeochemical cycles and climate. This review discusses the general distribution of primary production in the sea, the processe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in marine biology
دوره 74 شماره
صفحات -
تاریخ انتشار 2016